NY

Mechanisms of resistance to direct KRAS G12C inhibition

Kathryn Arbour, MD
Memorial Sloan Kettering Cancer Center
New York

Dr. Arbour will test a combination treatment regimen (MRTX849 for KRAS G12C and TNO155 for SHP2) in specialized mouse models of KRAS-mutant lung cancer, as well as analyze blood samples from patients who are currently receiving the MRTX849 drug to proactively monitor how these patients are developing resistance to MRTX849. Her ultimate goal is for new drugs, such as TNO155, to be added to the treatment regimen for KRAS-positive patients to combat acquired resistance. Dr. Arbour is the recipient of the Kristie Rolke Smith/LUNGevity Career Development Award, generously funded by the Rolke family in memory of their daughter, Kristie.

Overcoming chemoresistance through epigenetic modification in SCLC

Wei-Chu Victoria Lai, MD
Memorial Sloan Kettering Cancer Center
New York

Small cell lung cancer (SCLC) comprises 15% of all diagnosed cases of lung cancer. It usually responds to initial chemotherapy; however, it inevitably becomes resistant to the chemotherapy and progresses. Identifying strategies to reverse chemoresistance in SCLC continues to be an unmet need.

SCLC cells produce high amounts of a protein called EZH2. This protein helps SCLC cells escape the effects of chemotherapy. DS-3201b is a drug that blocks the effects of EZH2. Dr. Lai will conduct a phase 1 clinical trial with DS-3201b in patients with extensive-stage SCLC receiving chemotherapy. The goal of the trial is to determine whether addition of DS-3201b to chemotherapy prevents the development of chemoresistance in SCLC patients. 

Lung cancer detection by CRISPR-based detection of circulating tumor DNA

This grant was funded in part by Schmidt Legacy Foundation and Upstage Lung Cancer
Edwin Yau, MD, PhD
Roswell Park Cancer Institute
Buffalo

Currently,  computed tomography (CT) is available as a tool for the early detection of lung cancer in high-risk individuals. Unfortunately, it has a high false-positive rate: less than 5% of people with nodules found through CT actually have lung cancer. Apart from the distress associated with false positives, individuals may have to undergo invasive procedures, such as a biopsy, to rule out lung cancer.

Circulating tumor DNA (ctDNA) is DNA released from dying cancer cells into the bloodstream. Individuals with early-stage lung cancer may have ctDNA in their blood, even when the cancer is localized. CRISPR-Cas technology is a novel DNA modifying tool that can be used to develop sensitive, specific, and economic ctDNA assays. Dr. Edwin Yau will develop a CRISPR-Cas-based blood test to detect ctDNA in the blood of individuals suspected of having lung cancer. While the immediate goal of the project is to evaluate this blood test in individuals who have already undergone a CT scan, the ultimate goal of the project is to develop a blood test for screening all individuals.

Exploring the therapeutic potential of novel KRAS inhibitors in lung cancer

Piro Lito, MD, PhD
Memorial Sloan Kettering Cancer Center
New York

Dr. Lito is working with a new drug that works efficiently to stop the growth of lung cancer cells with a mutation in the KRAS gene. Funding from LUNGevity will provide resources to test the drug in mice that have KRAS-positive lung cancer. Dr. Lito’s ultimate aim is to develop a clinical trial for the drug for use in patients who test positive for a KRAS mutation.

The Occurrence of Lung Cancer After Surgical Resection: Impact of New Staging System, Use of Adjuvant Chemotherapy and Value of Chest CT Versus Chest Radiograph

Funded by LUNGevity Foundation in collaboration with The CHEST Foundation, the philanthropic arm of the American College of Chest Physicians
Alexei V. Bogolioubov, MD
Memorial Sloan Kettering Cancer Center
New York

Surgery is often recommended for patients who have localized lung cancer. Dr. Bogolioubov is analyzing how fast lung cancer comes back after surgery to remove the primary tumor. He is also evaluating the role of chest CT radiography for post-operative follow-up.

Mutational Analysis of the Tyrosine Kinome in Lung Cancer

Funded by LUNGevity Foundation in collaboration with The CHEST Foundation, the philanthropic arm of the American College of Chest Physicians
William Pao, MD, PhD
Memorial Sloan Kettering Cancer Center
New York

Dr. Pao’s research may determine whether specific mutations in tyrosine kinase genes make lung tumors vulnerable to EGFR-TKIs. A comprehensive analysis of the tyrosine kinase in lung cancers could also lead to new opportunities for drug development and more personalized molecularly targeted therapies.

Unveiling the role of Ubiquitin Ligases in the Biology and Prognosis of Lung Cancer

Funded equally by LUNGevity Foundation and American Lung Association National Office
Patricia Gonzalez Santamaria, PhD
New York University School of Medicine
New York

Dr. González Santamaria is investigating how the degradation of certain tumor suppressors (genes that stop cancer development) is accelerated and how that of certain onco-proteins (proteins that cause cancer) is slowed down in lung tumors. Her research will provide a platform for predicting the outcome for lung cancer patients.

Molecular Signatures of Invasiveness in Lung Adenocarcinoma

Funded equally by LUNGevity Foundation and the American Thoracic Society
Charles A. Powell, MD
Columbia University
New York

Dr. Powell is identifying and characterizing molecular changes that are important in lung adenocarcinoma differentiation (changes in cancer cell shape and size) and invasiveness (ability to spread to other parts of the body). His long-term goal is to use these biomarkers to facilitate early diagnosis, refine prognostic assessment, and develop new therapeutic targets for lung cancer treatment and prevention.

Mechanisms of RAS and RAF-mediated regulation of cap-dependent translation translation in NSCLC

Funded equally by LUNGevity Foundation and Joan's Legacy
Hayley McDaid, PhD
Albert Einstein College of Medicine
New York

Two commonly mutated genes in non-small cell lung cancer are KRAS and BRAF. Dr. McDaid is studying how these two genes control the synthesis of proteins in lung cancer cells. She is also testing how targeting the LKB1 mutation that often co-occurs with KRAS mutations can neutralize the effects of the KRAS mutation.

Functional Heterogeneiety of Osteopontin Isoforms in Lung Cancer

Funded equally by LUNGevity Foundation and the American Thoracic Society
Jessica Scott Donington, MD
NYU School of Medicine
New York

The protein osteopontin plays a significant role in the malignant potential of numerous types of cancer, including lung cancer. There are three distinct forms of this protein in humans. Dr. Donington is studying how the individual forms play significantly different roles in determining the invasive metastatic potential in lung cancer.