Stage I

A stage in which the lung tumor has grown through the innermost lining of the lung into deeper lung tissue

Lung cancer detection by CRISPR-based detection of circulating tumor DNA

This grant was funded in part by Schmidt Legacy Foundation and Upstage Lung Cancer
Edwin Yau, MD, PhD
Roswell Park Cancer Institute
Buffalo

Currently,  computed tomography (CT) is available as a tool for the early detection of lung cancer in high-risk individuals. Unfortunately, it has a high false-positive rate: less than 5% of people with nodules found through CT actually have lung cancer. Apart from the distress associated with false positives, individuals may have to undergo invasive procedures, such as a biopsy, to rule out lung cancer.

Circulating tumor DNA (ctDNA) is DNA released from dying cancer cells into the bloodstream. Individuals with early-stage lung cancer may have ctDNA in their blood, even when the cancer is localized. CRISPR-Cas technology is a novel DNA modifying tool that can be used to develop sensitive, specific, and economic ctDNA assays. Dr. Edwin Yau will develop a CRISPR-Cas-based blood test to detect ctDNA in the blood of individuals suspected of having lung cancer. While the immediate goal of the project is to evaluate this blood test in individuals who have already undergone a CT scan, the ultimate goal of the project is to develop a blood test for screening all individuals.

Intercept Lung Cancer Through Immune, Imaging & Molecular Evaluation-InTIME

Grant title (if any)
SU2C-LUNGevity Foundation-American Lung Association Lung Cancer Interception Dream Team
This grant was co-funded by Stand Up to Cancer, LUNGevity, and the American Lung Association
Avrum Spira, MD, MSc
Boston University
Boston
Steven Dubinett, MD
UCLA
Los Angeles
CA
Julie Brahmer, MD
Johns Hopkins Kimmel Cancer Center
Baltimore
MD
Sam Gambhir, MD, PhD
Stanford University
Palo Alto
CA
Matthew Meyerson, MD, PhD
Harvard/Dana-Farber Cancer Institute
Boston
MA
Charles Swanton, PhD
Francis Crick Institute
London, England

The SU2C-LUNGevity Foundation-American Lung Association Lung Cancer Interception Dream Team, led by LUNGevity SAB member Dr. Avrum Spira, is developing a combination of diagnostic tools, such as non-invasive nasal swabs, blood tests, and radiological imaging, to confirm whether lung abnormalities found on chest imaging are benign lung disease or lung cancer.

Integrated Blood-Based and Radiographic Interception of Lung Cancer

Grant title (if any)
SU2C-LUNGevity Foundation-American Lung Association Lung Cancer Interception Translational Research Team
This grant was co-funded by Stand Up to Cancer, LUNGevity, and the American Lung Association
Lecia Sequist, MD
Massachusetts General Hospital
Boston
Max Diehn, MD
Stanford University
Palo Alto
CA
Tilak Sundaresan, MD
Kaiser Permanente San Francisco
San Francisco
CA
Gad Getz, PhD
Broad Institute
Cambridge
MA

The SU2C-LUNGevity Foundation-American Lung Association Lung Cancer Interception Translational Research Team, headed by LUNGevity Scientific Advisory Board (SAB) member Dr. Lecia Sequist, is developing a lung cancer interception assay (LCIA) that can be used in conjunction with low-dose CT scans. This assay will be based on an integration of several blood-based assays that examine circulating tumor cells and circulating tumor DNA.

Dynamics of neoantigen landscape during immunotherapy in lung cancer

This grant was funded in part by the Schmidt Legacy Foundation
Valsamo Anagnostou, MD, PhD
Johns Hopkins University
Baltimore

The lung cancer treatment landscape is rapidly evolving with the advent of immunotherapy. Checkpoint inhibitors, a class of immune-targeted agents, are now available in both the first-line and second-line settings for certain subsets of lung cancer patients. However, the fraction of patients achieving a durable response remains low and, even among patients who respond, the majority develop resistance. Dr. Valsamo Anagnostou is using a comprehensive approach employing genome-wide and functional immune analyses to identify mechanisms of resistance to immune checkpoint blockade. In addition, she is developing a blood-based molecular assay utilizing serial blood samples of lung cancer patients to more accurately predict response and resistance to these therapies.

Optical Imaging for Early Lung Cancer Diagnosis

Lida Hariri, MD, PhD
Massachusetts General Hospital/Harvard University
Boston

A tissue biopsy is often required to make a definitive diagnosis of lung cancer. However, because of small size and inadequate biopsy yield, early-stage lung cancer is often difficult to diagnose. Dr. Hariri is using a novel imaging technique called optical coherence tomography (OCT) to develop tools to guide tissue biopsy sampling to improve tissue yield. These tools will also provide additional diagnostic information.

The Occurrence of Lung Cancer After Surgical Resection: Impact of New Staging System, Use of Adjuvant Chemotherapy and Value of Chest CT Versus Chest Radiograph

Funded by LUNGevity Foundation in collaboration with The CHEST Foundation, the philanthropic arm of the American College of Chest Physicians
Alexei V. Bogolioubov, MD
Memorial Sloan Kettering Cancer Center
New York

Surgery is often recommended for patients who have localized lung cancer. Dr. Bogolioubov is analyzing how fast lung cancer comes back after surgery to remove the primary tumor. He is also evaluating the role of chest CT radiography for post-operative follow-up.

Autoantibody biomarkers for the detection of lung cancer

Funded equally by LUNGevity Foundation and the American Lung Association
Michael Tainsky, PhD
Wayne State University, Karmanos Cancer Institute
Detroit

Dr. Tainsky has developed a technology that takes advantage of the responses of the human immune system to identify cancer-associated proteins that bind to antibodies present in the blood of cancer patients but not in the blood of healthy subjects or those with benign diseases. Dr. Tainsky is working to develop a non-invasive screening test for the early detection of lung cancer by using cancer-associated antigens as biomarkers.

Heterogeneity of Microarray-based Lung Cancer Signature in Patients with Lung Cancer

Funded by LUNGevity Foundation and The CHEST Foundation
Scott L. Shofer, MD
Durham VA Medical Center Pulmonary Service
Durham

Dr. Shofer’s research builds on work of earlier investigators who developed a lung cancer risk signature based on genetic changes in lung cells in smokers. Dr. Shofer hypothesizes that the lung cancer risk signature model is an indicator of how lung cells change during the process of cancer development. Should his hypothesis be correct, the lung cancer risk signature could be established as a sensitive biomarker capable of diagnosing patients with lung cancer by checking cells taken from the throat using a swab.

Diagnostic Test Development for Non-Small Cell Lung Cancer: Staging of Diagnosed Lung Cancer

Funded by LUNGevity Foundation, A Breath of Hope Foundation, and Partnership for Cures
Jeffrey A. Borgia, PhD
Rush University Medical Center
Chicago

Dr. Borgia has developed a blood test for identifying the presence of metastatic progression in non-small cell lung cancer. His current project allows for revision of the test to improve its accuracy and potentially reach an accuracy rate that will allow it to be useful as a stand-alone staging test.

Regional Delivery of Targeted Immunotherapy for Lung Cancer in the Pleura

Funded equally by LUNGevity Foundation and the National Lung Cancer Partnership
Prasad Adusumilli, PhD
Memorial Sloan Kettering Cancer Center
New York

Dr. Adusumilli is studying patients who underwent surgery for early-stage lung cancer but whose lung cancer returned because of a condition in which the cancer extends to the pleural membrane covering the lung cancer. Using genetic engineering, Dr. Adusumilli is modifying the patient’s own immune cells in a way that may not only eliminate the spread of tumor cells to the pleura but may also treat the spread of the cancer by tumors too small to be detected.