TX

Eliminating Drug-Tolerant Persister Cells Through T-cell Engineering

EGFR Resisters
Alexandre Reuben, PhD
University of Texas MD Anderson Cancer Center
Houston

In this project, Dr. Reuben and colleagues aim to develop a novel therapeutic strategy harnessing immune response in EGFR-mutant NSCLC.  He will use engineered T cells with receptors targeting EGFR antigens to eradicate drug-tolerant persister (DTP) cells, preventing the emergence of resistance following treatment by osimertinib.  This work lays the foundation for use of TCR-engineered T cells in treating patients with EGFR mutations.

T cell receptor engineering for the treatment of RET fusion-positive NSCLC

Grant title (if any)
RETpositive / LUNGevity Foundation Lung Cancer Research Award
Alexandre Reuben, PhD
University of Texas MD Anderson Cancer Center
Houston

Despite advances in the development of RET inhibitors, patients with RET fusions eventually progress. Immunotherapy has been inefficient in patients harboring RET fusions. However, RET fusion proteins themselves may be immunogenic and give rise to an immune response. Dr. Reuben hypothesizes that RET fusions give rise to immunogenic antigens which can be effectively recognized and targeted by engineered T-cells. This project will identify which antigens can elicit an immune response. This information will be used to engineer customized T-cells to gain the ability to recognize those cancer cells that produce these RET fusion proteins. The ultimate goal is to offer new therapeutic alternatives by expanding the possibility of immunotherapy treatment in the overwhelming majority of NSCLC patients harboring RET fusions.

Novel structure-based and combinatorial approaches for RET-fusion NSCLC

Grant title (if any)
Hamoui Foundation / LUNGevity Lung Cancer Research Award
John Heymach, MD, PhD
The University of Texas MD Anderson Cancer Center
Houston

There is an urgent need to identify new agents or combination therapies to benefit patients whose tumors have developed resistance to current RET inhibitors. Currently, the true extent of RET-dependent (resistance mutations in the RET gene) versus RET-independent mechanisms of resistance is unknown. Dr. Heymach’s team will study mechanisms and biomarkers of RET-independent drug resistance and test different drug combinations to overcome RET inhibitor resistance.

SCLC molecular subtypes to predict targeted and immune therapy response

Carl Gay, MD, PhD
The University of Texas MD Anderson Cancer Center
Houston

Dr. Gay and his team will test an immunotherapy-DNA damage response (DDR) inhibitor combination therapy in SCLC patients and validate a biomarker profile. Dr. Gay’s research aims to develop a new drug therapy combination and determine which patients are likely to benefit from it. 

Identification of predictive markers of toxicity to immunotherapy

This grant was funded in part by the Schmidt Legacy Foundation
Mehmet Altan, MD
The University of Texas MD Anderson Cancer Center
Houston

Side effects associated with immunotherapy (immune-related adverse events or irAEs) with checkpoint inhibitors are different from those seen in other treatment approaches, such as chemotherapy, radiation therapy, and targeted therapies. Their onset is unpredictable, so irAEs require different side-effect management strategies. Dr. Altan is studying how we can predict which patients will develop irAEs so that the best therapy can be selected and symptom management can be proactive.

Axl as a target to reverse EMT, treatment resistance and immunosuppression

Lauren Averett Byers, MD
MD Anderson Cancer Center
Houston
Don Gibbons, Jr., MD, PhD
MD Anderson Cancer Center
Houston
TX

Drs. Byers and Gibbons have discovered that lung cancer cells acquire the ability to hide from the immune system during epithelial-to-mesenchymal transition—a process through which cancer cells develop the ability to spread to other parts of the body (metastasis). The LUNGevity award will help Drs. Byers and Gibbons study the effect of a new drug that can reverse the EMT process and make lung cancer cells more visible to the immune system.

Dissecting novel mechanisms of lung cancer pathogenesis

Kathryn O’Donnell, PhD
UT Southwestern Medical Center
Dallas

Dr. O’Donnell has discovered that lung cancer cells make a protein called PCDH7 that is present on the surface of cancer cells where it may be accessible to therapies. In cooperation with the KRAS protein, the PCDH7 protein relays signals from outside the cell to make cancer cells grow faster. She is studying the function of the PCDH7 protein and developing strategies to reduce its effect on the KRAS pathway.

EGFR/estrogen interactions: role in bronchioalveolar carcinoma and gender differences in the efficacy of antiangiogenic therapy

Funded equally by LUNGevity Foundation and Joan's Legacy
John Heymach, MD, PhD
MD Anderson Cancer Center
Houston

The role of the hormone estrogen in the development of lung cancer has been established. Dr. Heymach is studying how estrogen affects signaling by the EGFR gene and secretion of proteins that fuel the development of new blood vessels necessary to sustain the growth of the cancer.

Inflammation-Related Lung Cancer Prevention by Targeting the NF-kB Pathway

American Lung Association/LUNGevity Foundation Discovery Award
Seyed Javad Moghaddam, MD
University of Texas MD Anderson Cancer Center
Houston

Dr. Moghaddam is investigating how airway inflammation can lead to lung cancer.  The factor NF-κβ is involved in both inflammation and carcinogenesis. Dr. Moghaddam’s hypothesis is that NF-κβ is a likely candidate for the promotion of lung cancer by inflammation in chronic obstructive pulmonary disease patients.

Predictive blood-based markers of response to VEGF inhibitors in NSCLC

A Breath of Hope Lung Foundation
John V. Heymach, MD, PhD
University of Texas MD Anderson Cancer Center
Houston
David Carbone, MD, PhD
The Ohio State University
Columbus
OH

Cancer cells make chemicals that attract blood vessels. This process is known as angiogenesis. Drugs that inhibit angiogenesis are already being used to treat lung cancer patients. Unfortunately, not all patients respond to angiogenesis inhibitors. Dr. John Heymach is studying what determines whether a patient will respond.