Early detection

The process of detecting lung cancer before it has progressed into full-blown disease

Lung cancer detection by CRISPR-based detection of circulating tumor DNA

This grant was funded in part by Schmidt Legacy Foundation and Upstage Lung Cancer
Edwin Yau, MD, PhD
Roswell Park Cancer Institute
Buffalo

Currently,  computed tomography (CT) is available as a tool for the early detection of lung cancer in high-risk individuals. Unfortunately, it has a high false-positive rate: less than 5% of people with nodules found through CT actually have lung cancer. Apart from the distress associated with false positives, individuals may have to undergo invasive procedures, such as a biopsy, to rule out lung cancer.

Circulating tumor DNA (ctDNA) is DNA released from dying cancer cells into the bloodstream. Individuals with early-stage lung cancer may have ctDNA in their blood, even when the cancer is localized. CRISPR-Cas technology is a novel DNA modifying tool that can be used to develop sensitive, specific, and economic ctDNA assays. Dr. Edwin Yau will develop a CRISPR-Cas-based blood test to detect ctDNA in the blood of individuals suspected of having lung cancer. While the immediate goal of the project is to evaluate this blood test in individuals who have already undergone a CT scan, the ultimate goal of the project is to develop a blood test for screening all individuals.

Immunometabolic T cell profiling as a prognostic liquid biopsy in NSCLC

Kellie Smith, PhD
Johns Hopkins School of Medicine
Baltimore

Checkpoint inhibitors, a type of immunotherapy, are now available in the first-line and second-line settings for certain subsets of NSCLC patients. Furthermore, the U.S. Food and Drug Administration recently approved an immunotherapy-combination treatment regimen for the treatment of a subset of advanced-stage NSCLC patients. While we are making progress in combining and sequencing immunotherapy with other conventional treatments, it is still unclear which patients will respond to these combinations. Dr. Kellie Smith’s laboratory is studying immune cells in blood samples from patients who have received the recently approved combination therapy. She postulates that immune cells from patients receiving the combination behave very differently from immune cells from patients who have received single-agent immunotherapy. Dr. Smith’s team will identify and exploit these differences to develop a blood test that will help predict which patients may benefit from combination therapies, thereby sparing patients the exposure to ineffective treatments.

Intercept Lung Cancer Through Immune, Imaging & Molecular Evaluation-InTIME

Grant title (if any)
SU2C-LUNGevity Foundation-American Lung Association Lung Cancer Interception Dream Team
This grant was co-funded by Stand Up to Cancer, LUNGevity, and the American Lung Association
Avrum Spira, MD, MSc
Boston University
Boston
Steven Dubinett, MD
UCLA
Los Angeles
CA
Julie Brahmer, MD
Johns Hopkins Kimmel Cancer Center
Baltimore
MD
Sam Gambhir, MD, PhD
Stanford University
Palo Alto
CA
Matthew Meyerson, MD, PhD
Harvard/Dana-Farber Cancer Institute
Boston
MA
Charles Swanton, PhD
Francis Crick Institute
London, England

The SU2C-LUNGevity Foundation-American Lung Association Lung Cancer Interception Dream Team, led by LUNGevity SAB member Dr. Avrum Spira, is developing a combination of diagnostic tools, such as non-invasive nasal swabs, blood tests, and radiological imaging, to confirm whether lung abnormalities found on chest imaging are benign lung disease or lung cancer.

Integrated Blood-Based and Radiographic Interception of Lung Cancer

Grant title (if any)
SU2C-LUNGevity Foundation-American Lung Association Lung Cancer Interception Translational Research Team
This grant was co-funded by Stand Up to Cancer, LUNGevity, and the American Lung Association
Lecia Sequist, MD
Massachusetts General Hospital
Boston
Max Diehn, MD
Stanford University
Palo Alto
CA
Tilak Sundaresan, MD
Kaiser Permanente San Francisco
San Francisco
CA
Gad Getz, PhD
Broad Institute
Cambridge
MA

The SU2C-LUNGevity Foundation-American Lung Association Lung Cancer Interception Translational Research Team, headed by LUNGevity Scientific Advisory Board (SAB) member Dr. Lecia Sequist, is developing a lung cancer interception assay (LCIA) that can be used in conjunction with low-dose CT scans. This assay will be based on an integration of several blood-based assays that examine circulating tumor cells and circulating tumor DNA.

Optical Imaging for Early Lung Cancer Diagnosis

Lida Hariri, MD, PhD
Massachusetts General Hospital/Harvard University
Boston

A tissue biopsy is often required to make a definitive diagnosis of lung cancer. However, because of small size and inadequate biopsy yield, early-stage lung cancer is often difficult to diagnose. Dr. Hariri is using a novel imaging technique called optical coherence tomography (OCT) to develop tools to guide tissue biopsy sampling to improve tissue yield. These tools will also provide additional diagnostic information.

Genome Alterations Associated With Airway Premalignant Lesion Progression

Joshua Campbell, PhD
Boston University
Boston

One of the challenges for early detection and prevention of squamous cell lung cancer, a type of non-small cell lung cancer (NSCLC), is the lack of understanding of how premalignant lesions develop and progress to lung cancer. Dr. Campbell is studying how normal lung cells acquire changes in their DNA to form premalignant lesions. His ultimate goal is to develop a biomarker to predict development of squamous cell lung cancer.

Lung screening via biophotonic analysis of nanoarchitecture of buccal cells

This grant was funded in part by Upstage Lung Cancer
Vadim Backman, PhD
Northwestern University
Evanston
Ankit Bharat, MBBS
Northwestern University
Evanston
IL

Cells in the respiratory tract are usually stacked in an orderly fashion. As lung cancer develops, the cells get “un-stacked” and their shapes change, giving them the ability to grow and spread to other parts of the body. Dr. Vadim Backman from Northwestern University is utilizing a new technology called Partial Wave Spectroscopy for seeing those cells. With the LUNGevity Early Detection Award, he will check how cells taken from the cheeks of stage I lung cancer patients reflect these early changes with the ultimate goal of using partial wave spectroscopy technology for early detection of lung cancer.

Detecting early stage lung cancer with circulating tumor cells

Rajan Kulkarni, MD, PhD
Oregon Health and Science University (formerly at UCLA Medical Center)
Portland

Dr. Kulkarni is studying how circulating tumor cells (cancer cells that are released into the blood stream) can be used to develop a blood test for lung cancer early detection and treatment. Funding from LUNGevity will help him use a novel technology called the Vortex Chip to test two things: first, if lung cancer be detected early by identifying circulating tumor cells in the blood and second, if there are biomarkers in circulating tumor cells that can differentiate patients who will respond to immunotherapy or chemotherapy.

Fluorescence in Situ Hybridization for the Detection of Lung Cancer

Funded by LUNGevity Foundation in collaboration with The CHEST Foundation, the philanthropic arm of the American College of Chest Physicians
Clinton H. Doerr, MD
Mayo Graduate School of Medicine
Rochester

Tests that improve the ability to detect tumors at their earliest stages have the potential to reduce lung cancer mortality. Dr. Doerr developed three fluorescence in situ hybridization (FISH) probe sets for the detection of lung cancer in cell specimens. His research is assessing the reliability of these probe sets and routine cell examination for the detection of lung cancer in cell specimens obtained from bronchoscopy.

Circulating miRNA as a biomarker in lung cancer

Funded by LUNGevity Foundation and The CHEST Foundation
S. Patrick Nana-Sinkam, MD
The Ohio State University
Columbus

Dr. Nana-Sinkam is delineating the role of microRNA expression profiling in the diagnosis, management, and prognosis of lung cancer. He is testing whether microRNA expression profiles are detectable in the  blood of lung cancer patients. He will compare individuals with lung cancer with current and former smokers without lung cancer.