Search Instructions
Use the filters below to search for research projects. For the fillable fields, you can type in any portion of a search string.
Use the filters below to search for research projects. For the fillable fields, you can type in any portion of a search string.
The SU2C-LUNGevity Foundation-American Lung Association Lung Cancer Interception Translational Research Team, headed by LUNGevity Scientific Advisory Board (SAB) member Dr. Lecia Sequist, is developing a lung cancer interception assay (LCIA) that can be used in conjunction with low-dose CT scans. This assay will be based on an integration of several blood-based assays that examine circulating tumor cells and circulating tumor DNA.
One of the challenges for early detection and prevention of squamous cell lung cancer, a type of non-small cell lung cancer (NSCLC), is the lack of understanding of how premalignant lesions develop and progress to lung cancer. Dr. Campbell is studying how normal lung cells acquire changes in their DNA to form premalignant lesions. His ultimate goal is to develop a biomarker to predict development of squamous cell lung cancer.
A tissue biopsy is often required to make a definitive diagnosis of lung cancer. However, because of small size and inadequate biopsy yield, early-stage lung cancer is often difficult to diagnose. Dr. Hariri is using a novel imaging technique called optical coherence tomography (OCT) to develop tools to guide tissue biopsy sampling to improve tissue yield. These tools will also provide additional diagnostic information.
Chemotherapy has been the mainstay for treatment of small cell lung cancer (SCLC)—a highly aggressive subtype of lung cancer—for the past three decades. SCLC responds well to initial treatment but inevitably comes back. No targeted therapy is currently available for patients with SCLC. Dr. Lehman is studying how SCLC becomes resistant to chemotherapy. His research will further our understanding of chemotherapy resistance and identify novel targets for SCLC treatment.
Cells in the respiratory tract are usually stacked in an orderly fashion. As lung cancer develops, the cells get “un-stacked” and their shapes change, giving them the ability to grow and spread to other parts of the body. Dr. Vadim Backman from Northwestern University is utilizing a new technology called Partial Wave Spectroscopy for seeing those cells. With the LUNGevity Early Detection Award, he will check how cells taken from the cheeks of stage I lung cancer patients reflect these early changes with the ultimate goal of using partial wave spectroscopy technology for early detection of lung cancer.
Drs. Byers and Gibbons have discovered that lung cancer cells acquire the ability to hide from the immune system during epithelial-to-mesenchymal transition—a process through which cancer cells develop the ability to spread to other parts of the body (metastasis). The LUNGevity award will help Drs. Byers and Gibbons study the effect of a new drug that can reverse the EMT process and make lung cancer cells more visible to the immune system.
Dr. Kulkarni is studying how circulating tumor cells (cancer cells that are released into the blood stream) can be used to develop a blood test for lung cancer early detection and treatment. Funding from LUNGevity will help him use a novel technology called the Vortex Chip to test two things: first, if lung cancer be detected early by identifying circulating tumor cells in the blood and second, if there are biomarkers in circulating tumor cells that can differentiate patients who will respond to immunotherapy or chemotherapy.
Dr. Lito is working with a new drug that works efficiently to stop the growth of lung cancer cells with a mutation in the KRAS gene. Funding from LUNGevity will provide resources to test the drug in mice that have KRAS-positive lung cancer. Dr. Lito’s ultimate aim is to develop a clinical trial for the drug for use in patients who test positive for a KRAS mutation.
Dr. O’Donnell has discovered that lung cancer cells make a protein called PCDH7 that is present on the surface of cancer cells where it may be accessible to therapies. In cooperation with the KRAS protein, the PCDH7 protein relays signals from outside the cell to make cancer cells grow faster. She is studying the function of the PCDH7 protein and developing strategies to reduce its effect on the KRAS pathway.
Cancer cells have found ways to block the body’s own immune system from helping to destroy the tumor. However, newly developed drugs can make the patient’s own immune system more efficient. This team will administer two different immunotherapy drugs to lung cancer patients and determine whether the addition of another drug, PFB-509, can improve the anti-tumor effects and patient outcomes.
Dr. Forde is working to apply a kind of immunotherapy that has been successful in people with lung cancer in later stages to people with early-stage lung cancer, stimulating their immune system to attack cancer cells. This treatment, nivolumab, uses anti PD-1 antibodies to release the “brakes” on the immune system.
Each year, more than 22,000 people who have never smoked are diagnosed with lung cancer, many at younger ages. Dr. Gümüş and team will identify underlying genes that could indicate a higher risk of developing lung cancer, similar to what has been found with certain forms of breast, colorectal, and pancreatic cancers. People who carry the high-risk genes could then be monitored more carefully.
Brain metastases are extremely common in both NSCLC and melanoma patients. Two new immunity-boosting drugs are showing promise against both of these kinds of cancer. However, whether these drugs work on cancer cells that metastasize and lodge in the brain is not known. Dr. Jilaveanu will study patients with brain metastases treated with the new drugs to find biomarkers that could predict the patients’ response to this treatment.
A subset of lung cancer patients have mutations in a gene called ALK. Dr. Lovly will identify new molecular targets that can be blocked in combination with ALK inhibitors to overcome the resistance that often develops after successful treatment and to promote better responses.
With the goal of a simple blood test that permits early detection of lung cancer, Dr. Patel will test a new technology to see if it can accurately identify lung cancer-specific telltale changes in the blood of patients with early-stage lung cancer.
Small cell lung cancer is an exceptionally aggressive type of lung cancer. While these tumors are initially responsive to a combination of chemotherapy drugs, tumor recurrence is near universal. Dr. Poirier will develop and study models of drug resistance to identify new strategies to overcome chemotherapy resistance.
Dr. Rieger-Christ and team are developing a minimally invasive test using nasal swabs to determine quickly and easily whether nodules found through CT screening are early cancer or benign lesions.
Drs. Sage and Weissman will test a new immunotherapy to boost the arsenal of immune cells to combat SCLC. They will work to disable a protein on the cancer cells that inhibits macrophages, a type of immune cell that can engulf and destroy cancer cells. This will boost the killing capacity of macrophages and recruit more immune cells to the area by the tumor.
Lung cancer cells depend on continuous cross-talk with other cells around them. Drs. Sweet-Cordero and Cochran will use decoy proteins to intercept and disable this essential molecular communications between the tumor and its environment, thereby destroying the cancer.
Dr. Burns is working on targeted therapy for NSCLC patients with mutations in a gene called KRAS, using a new class of drugs.