Research Database

Search Instructions

Use the filters below to search for research projects. For the fillable fields, you can type in any portion of a search string.

Key words
Career Development Award
Mehmet Altan, MD
The University of Texas MD Anderson Cancer Center, Houston, TX
This grant was funded in part by the Schmidt Legacy Foundation

Side effects associated with immunotherapy (immune-related adverse events or irAEs) with checkpoint inhibitors are different from those seen in other treatment approaches, such as chemotherapy, radiation therapy, and targeted therapies. Their onset is unpredictable, so irAEs require different side-effect management strategies. Dr. Altan is studying how we can predict which patients will develop irAEs so that the best therapy can be selected and symptom management can be proactive.

Career Development Award
Valsamo Anagnostou, MD, PhD
Johns Hopkins University, Baltimore, MD
This grant was funded in part by the Schmidt Legacy Foundation

The lung cancer treatment landscape is rapidly evolving with the advent of immunotherapy. Checkpoint inhibitors, a class of immune-targeted agents, are now available in both the first-line and second-line settings for certain subsets of lung cancer patients. However, the fraction of patients achieving a durable response remains low and, even among patients who respond, the majority develop resistance. Dr. Valsamo Anagnostou is using a comprehensive approach employing genome-wide and functional immune analyses to identify mechanisms of resistance to immune checkpoint blockade. In addition, she is developing a blood-based molecular assay utilizing serial blood samples of lung cancer patients to more accurately predict response and resistance to these therapies.

Career Development Award
Zofia Piotrowska, MD
Massachusetts General Hospital, Boston, MA

Targeted therapies have become a mainstay of treatment for non-small cell lung cancer patients whose tumors test positive for a targetable driver mutation. The EGFR mutation is one such targetable mutation. New third-generation EGFR inhibitors have recently entered the clinic and can be very effective therapies for some patients who develop resistance to first- and second-generation EGFR inhibitors. Unfortunately, we are now seeing that cancer cells can also learn how to outsmart these third-generation inhibitors, and new and more effective treatments are needed. Dr. Zofia Piotrowska is studying how lung cancer cells become resistant to third-generation EGFR inhibitors, such as osimertinib, and how the heterogeneity of EGFR-mutant lung cancers can contribute to resistance to drugs like osimertinib. During the period of this award, Dr. Piotrowska will also be conducting a clinical trial testing a novel drug combination developed to prevent or delay the development of drug resistance among patients with EGFR-mutant lung cancer.

SU2C-LUNGevity-ALA LC Interception Award
Avrum Spira, MD, MSc
Boston University, Boston, MA
Steven Dubinett, MD
UCLA, Los Angeles, CA
Julie Brahmer, MD
Johns Hopkins Kimmel Cancer Center, Baltimore, MD
This grant was co-funded by Stand Up to Cancer, LUNGevity, and the American Lung Association

The SU2C-LUNGevity Foundation-American Lung Association Lung Cancer Interception Dream Team, led by LUNGevity SAB member Dr. Avrum Spira, is developing a combination of diagnostic tools, such as non-invasive nasal swabs, blood tests, and radiological imaging, to confirm whether lung abnormalities found on chest imaging are benign lung disease or lung cancer.

SU2C-LUNGevity-ALA LC Interception Award
Lecia Sequist, MD
Massachusetts General Hospital, Boston, MA
Max Diehn, MD
Stanford University, Palo Alto, CA
Tilak Sundaresan, MD
Kaiser Permanente San Francisco, San Francisco, CA
This grant was co-funded by Stand Up to Cancer, LUNGevity, and the American Lung Association

The SU2C-LUNGevity Foundation-American Lung Association Lung Cancer Interception Translational Research Team, headed by LUNGevity Scientific Advisory Board (SAB) member Dr. Lecia Sequist, is developing a lung cancer interception assay (LCIA) that can be used in conjunction with low-dose CT scans. This assay will be based on an integration of several blood-based assays that examine circulating tumor cells and circulating tumor DNA.

Career Development Award
Joshua Campbell, PhD
Boston University, Boston, MA

One of the challenges for early detection and prevention of squamous cell lung cancer, a type of non-small cell lung cancer (NSCLC), is the lack of understanding of how premalignant lesions develop and progress to lung cancer. Dr. Campbell is studying how normal lung cells acquire changes in their DNA to form premalignant lesions. His ultimate goal is to develop a biomarker to predict development of squamous cell lung cancer.

Career Development Award
Lida Hariri, MD, PhD
Massachusetts General Hospital/Harvard University, Boston, MA

A tissue biopsy is often required to make a definitive diagnosis of lung cancer. However, because of small size and inadequate biopsy yield, early-stage lung cancer is often difficult to diagnose. Dr. Hariri is using a novel imaging technique called optical coherence tomography (OCT) to develop tools to guide tissue biopsy sampling to improve tissue yield. These tools will also provide additional diagnostic information.

Career Development Award
Jonathan Lehman, MD, PhD
Vanderbilt University Medical Center, Nashville, TN

Chemotherapy has been the mainstay for treatment of small cell lung cancer (SCLC)—a highly aggressive subtype of lung cancer—for the past three decades. SCLC responds well to initial treatment but inevitably comes back. No targeted therapy is currently available for patients with SCLC. Dr. Lehman is studying how SCLC becomes resistant to chemotherapy. His research will further our understanding of chemotherapy resistance and identify novel targets for SCLC treatment.

Early Detection Award
Vadim Backman, PhD
Northwestern University, Evanston, IL
Ankit Bharat, MBBS
Northwestern University, Evanston, IL
This grant was funded in part by Upstage Lung Cancer

Cells in the respiratory tract are usually stacked in an orderly fashion. As lung cancer develops, the cells get “un-stacked” and their shapes change, giving them the ability to grow and spread to other parts of the body. Dr. Vadim Backman from Northwestern University is utilizing a new technology called Partial Wave Spectroscopy for seeing those cells. With the LUNGevity Early Detection Award, he will check how cells taken from the cheeks of stage I lung cancer patients reflect these early changes with the ultimate goal of using partial wave spectroscopy technology for early detection of lung cancer.

Therapeutics Award
Lauren Averett Byers, MD
MD Anderson Cancer Center, Houston, TX
Don Gibbons, Jr., MD, PhD
MD Anderson Cancer Center, Houston, TX

Drs. Byers and Gibbons have discovered that lung cancer cells acquire the ability to hide from the immune system during epithelial-to-mesenchymal transition—a process through which cancer cells develop the ability to spread to other parts of the body (metastasis). The LUNGevity award will help Drs. Byers and Gibbons study the effect of a new drug that can reverse the EMT process and make lung cancer cells more visible to the immune system.

Career Development Award
Rajan Kulkarni, MD, PhD
Oregon Health and Science University (formerly at UCLA Medical Center), Portland, OR

Dr. Kulkarni is studying how circulating tumor cells (cancer cells that are released into the blood stream) can be used to develop a blood test for lung cancer early detection and treatment. Funding from LUNGevity will help him use a novel technology called the Vortex Chip to test two things: first, if lung cancer be detected early by identifying circulating tumor cells in the blood and second, if there are biomarkers in circulating tumor cells that can differentiate patients who will respond to immunotherapy or chemotherapy.

Career Development Award
Piro Lito, MD, PhD
Memorial Sloan Kettering Cancer Center, New York, NY

Dr. Lito is working with a new drug that works efficiently to stop the growth of lung cancer cells with a mutation in the KRAS gene. Funding from LUNGevity will provide resources to test the drug in mice that have KRAS-positive lung cancer. Dr. Lito’s ultimate aim is to develop a clinical trial for the drug for use in patients who test positive for a KRAS mutation.

Career Development Award
Kathryn O’Donnell, PhD
UT Southwestern Medical Center, Dallas, TX

Dr. O’Donnell has discovered that lung cancer cells make a protein called PCDH7 that is present on the surface of cancer cells where it may be accessible to therapies. In cooperation with the KRAS protein, the PCDH7 protein relays signals from outside the cell to make cancer cells grow faster. She is studying the function of the PCDH7 protein and developing strategies to reduce its effect on the KRAS pathway.

Therapeutics Award
Alberto Chiappori, MD
H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
Scott Antonia, MD, PhD
H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL

Cancer cells have found ways to block the body’s own immune system from helping to destroy the tumor. However, newly developed drugs can make the patient’s own immune system more efficient. This team will administer two different immunotherapy drugs to lung cancer patients and determine whether the addition of another drug, PFB-509, can improve the anti-tumor effects and patient outcomes.

Career Development Award
Patrick Forde, MD (MB, BCh)
Johns Hopkins Kimmel Cancer Center, Baltimore, MD

Dr. Forde is working to apply a kind of immunotherapy that has been successful in people with lung cancer in later stages to people with early-stage lung cancer, stimulating their immune system to attack cancer cells. This treatment, nivolumab, uses anti PD-1 antibodies to release the “brakes” on the immune system.

Early Detection Award
Zeynep H. Gümüş, PhD
Icahn School of Medicine at Mount Sinai, New York, NY
Steven M. Lipkin, MD, PhD
Joan & Sanford I. Weill Medical College of Cornell University, New York, NY
Kenneth Offit, MD, MPH
Memorial Sloan Kettering Cancer Center, New York, NY

Each year, more than 22,000 people who have never smoked are diagnosed with lung cancer, many at younger ages. Dr. Gümüş and team will identify underlying genes that could indicate a higher risk of developing lung cancer, similar to what has been found with certain forms of breast, colorectal, and pancreatic cancers. People who carry the high-risk genes could then be monitored more carefully.

Therapeutics Award
Lucia Beatrice Jilaveanu, MD, PhD
Yale University, New Haven, CT
LUNGevity Foundation, in partnership with the Melanoma Research Alliance and the Lung Cancer Research Foundation, is co-funding research on PD-I inhibitor treatment options for both non-small cell lung cancer (NSCLC) and metastatic melanoma (MM) patients

Brain metastases are extremely common in both NSCLC and melanoma patients. Two new immunity-boosting drugs are showing promise against both of these kinds of cancer. However, whether these drugs work on cancer cells that metastasize and lodge in the brain is not known. Dr. Jilaveanu will study patients with brain metastases treated with the new drugs to find biomarkers that could predict the patients’ response to this treatment.

Career Development Award
Christine Lovly, MD, PhD
Vanderbilt University School of Medicine, Nashville, TN

A subset of lung cancer patients have mutations in a gene called ALK. Dr. Lovly will identify new molecular targets that can be blocked in combination with ALK inhibitors to overcome the resistance that often develops after successful treatment and to promote better responses.

Early Detection Award
Abhijit Patel, MD, PhD
Yale University, New Haven, CT

With the goal of a simple blood test that permits early detection of lung cancer, Dr. Patel will test a new technology to see if it can accurately identify lung cancer-specific telltale changes in the blood of patients with early-stage lung cancer.

Career Development Award
John Poirier, PhD
Memorial Sloan Kettering Cancer Center, New York, NY
This grant was funded in part by the American Lung Association

Small cell lung cancer is an exceptionally aggressive type of lung cancer. While these tumors are initially responsive to a combination of chemotherapy drugs, tumor recurrence is near universal. Dr. Poirier will develop and study models of drug resistance to identify new strategies to overcome chemotherapy resistance.